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1. INTRODUCTION

The Hall effect in plasmas [1, 2], which is governed
by the freezing of a magnetic field in the electron com-
ponent and, accordingly, by transport of the magnetic
field with the electron current velocity, results in an
enhanced-rate propagation of the magnetic field,
whereas the current flows along the plasma density gra-
dient (to follow the development of this problem, see
reviews and papers [3–14]). The electron density can be
nonuniform both at the plasma boundary (at the elec-
trode surface) and in the plasma interior. The main
mechanism for the rapid penetration of a magnetic field
into a plasma is the “braking” of the magnetic field
(which is carried by the electric current) at the positive
gradient of the electron density. As a result, the mag-
netic field is “scattered” in the direction orthogonal to
the direction of the electron current. This phenomenon
has a substantial impact on the dynamics of the field
and electron component treated in the electron magne-
tohydrodynamic (EMHD) theory and on the plasma
dynamics treated in a more general MHD approxima-
tion. In particular, the rapid penetration of a magnetic
field due to the Hall effect plays a key role in the forma-
tion of a highly inhomogeneous noncylindrical current
sheath in Filippov’s plasma focus (PF) discharges. This
is confirmed by the good agreement (see [12]) between
the experimental data obtained by Orlov 

 

et al.

 

 on the
LV-2 device [15] and the results of two-dimensional
numerical simulations carried out by Vikhrev and
Zabajdullin [11].

In accordance with the hypothesis advanced by
Kukushkin and Rantsev-Kartinov [18], the Hall effect
plays a particularly important role [16, 17] in the for-
mation of a closed heterogeneous spheromak-like mag-
netic configuration (SLMC) by the self-magnetic field
of Filippov’s PF. An analysis of the experimental
results of [15] performed by Kukushkin 

 

et al.

 

 [16, 17]

provides evidence for the formation of an SLMC with
a substantial stored energy. An important feature of the
formation of an SLMC in a PF discharge is the possi-
bility of further increasing the stored energy via the
compression of the plasma inside the SLMC by the
residual magnetic field of the PF. In a hybrid 

 

Z

 

–

 

θ

 

 pinch
that is formed at the major axis of an SLMC, the plasma
energy density is substantially (several orders of mag-
nitude) higher than that in experiments on building up
force-free spheromak configurations [19] (with the
help of an artificially produced poloidal field) and on
confining the spheromak plasma in a special chamber
of the “flux conserver” type (see, e.g., [20]).

Here, we develop two qualitative models of an
enhanced-rate (in comparison with ordinary diffusion)
propagation of the magnetic field in a plasma due to the
Hall effect. The first model, which develops the “hydro-
dynamic” approach proposed by Kukushkin [21],
makes it possible not only to reproduce some familiar
results of EMHD theory, such as the propagation of a
magnetic field along the anode surface in a homoge-
neous plasma (Section 2.1) and the penetration of a
magnetic field into a plasma with a step (Section 2.2)
density profile and with a density profile increasing
monotonically (Section 2.3) in the direction of the cur-
rent velocity, but also to derive scalings for a plasma
with a nonmonotonic density profile in the EMHD
model (Section 2.3) and for the initial stage of the
plasma displacement from the anode in MHD theory
(Section 2.4). The second model provides exact ana-
lytic expressions for the main global parameters of the
enhanced-rate propagation of a magnetic field in an iso-
thermal inhomogeneous plasma: the front velocity of
the magnetic field (Section 3.1) and the effective front
thickness (Section 3.2).
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2. “HYDRODYNAMIC” MODEL 
OF THE ENHANCED-RATE PROPAGATION 

OF A MAGNETIC FIELD IN A PLASMA

 

2.1. Enhanced-Rate Propagation of a Magnetic Field 
along the Anode

 

In EMHD theory (in which the ion velocity is equal,
by definition, to 

 

V

 

i

 

 = 0), the enhanced-rate propagation
of a magnetic field along the anode surface due to the
Hall effect can be described by a simple qualitative
model proposed by Kukushkin [21], which is based on
the qualitative solution to the EMHD equations for an
isothermal plasma (Fig. 1),

 

(1)

(2)

 

with the following initial and boundary conditions: the
magnetic field 

 

H

 

 = (0, –

 

H

 

0

 

, 0)

 

 at 

 

t

 

 = 0 is nonzero only
in the region 

 

X

 

 < 0 and the anode occupies the region

 

Z

 

 < 0. The EMHD model is based on the following
qualitative considerations. A magnetic field diffusely
penetrating into the plasma gives rise to a density gra-
dient on the diffusion scale length 

 

∆

 

x

 

dif

 

(

 

t

 

)

 

. By virtue of
the freezing of the magnetic field in the electron plasma
component, the plasma density gradient–driven elec-
tron current with density 

 

j

 

z

 

 = (

 

c

 

/4

 

π

 

)(

 

curlH
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Z

 

 =
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/4

 

π
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∂
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/
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 carries the magnetic field with a current
velocity 

 

V

 

eZ

 

 = –

 

j

 

z

 

/

 

ne

 

 toward the anode. Near the anode
surface, where a high (formally, infinitely high) elec-
tron density (and, accordingly, infinitely high electron
conductivity) prevents the magnetic field from pene-
trating into the anode, the electron current changes
direction and starts to flow with a velocity 

 

V

 

eX

 

(

 

t

 

) 

 

≈

 

cH

 

0

 

/4

 

π

 

ne

 

∆

 

x

 

dif

 

(

 

t

 

)

 

 along the anode surface, thus carrying
the magnetic field with a velocity 

 

ω

 

e

 

τ

 

ei

 

 times higher
than the diffusion velocity. From these considerations,
we easily arrive at the following results:

 

(3)

(4)

(5)

 

where

 

(6)

 

τ

 

ei

 

 is the electron–ion (e–i) collision frequency, 

 

ω

 

e

 

 is the
electron gyrofrequency, 

 

σ

 

 is the plasma conductivity,
and 

 

D

 

σ

 

 is the magnetic field diffusion coefficient in a
plasma.

The qualitative model proposed in [21] reproduces
the above formula for 

 

D

 

eff

 

, which was derived earlier
by Gordeev 

 

et al.

 

 [9] from an exact analytic (actually,

∂H
∂t
------- curl Dσ rot H( )– curl Ve H,[ ] ,+=
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-------------curlH,–=

∆zeff ∆xdif∼ 2Dσt,=
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Deff ωeτei( )2
Dσ,=

Dσ
c

2

4πσ
----------,=

 

one-dimensional) analysis of the magnetic field propa-
gation in a narrow layer along the anode (the applica-
bility range of the equations used in [9] was then ana-
lyzed in detail by Chukbar [10]). The results obtained
in [9], which apply to the propagation of a magnetic
field in a plasma in a narrow layer along the anode,
were later confirmed by the results of two-dimensional
numerical simulations [11], which are valid not only in
the anode region but also over the entire plasma vol-
ume.

 

2.2. Propagation of a Magnetic Field along the 
Boundary between Two Media in the EMHD Model

 

We consider the propagation of a magnetic field
along the boundary between two media with different
densities, 

 

n

 

1

 

 and 

 

n

 

2

 

, of free electrons (see the left part of
Fig. 2). This is the problem of the magnetic field prop-
agation along the anode surface generalized to the case
in which the magnetic field can penetrate into the
anode. We consider the simplest case of an isothermal
plasma (the method described below can also be used
to treat the problem in the case of a nonisothermal
plasma).

We consider the magnetic field distribution such
that, for 

 

n

 

2

 

 > 

 

n

 

1

 

, the electron motion is as shown in the
right part of Fig. 2. The motion of the magnetic field
front is governed by the current velocities in the first
(

 

V

 

e

 

1

 

) and second (

 

V

 

e

 

2

 

) media. If the second medium
were an anode with infinite conductivity, then, by the
time 

 

t

 

, the magnetic field in the first medium would

propagate over the distance 

 

∆

 

 ~ 

 

. How-
ever, since the conductivity of the second medium is
finite, the electrons in the second medium move in the
direction opposite to that of the electron motion in the
first medium, causing the magnetic field front to prop-

agate backward through the distance 

 

∆

 

 ~ 

 

.
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Fig. 1. A graphical illustration of the mechanism for
enhanced-rate propagation of a magnetic field along the
anode surface.
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Consequently, the distance through which the field
front propagates along the boundary between the two
media with the same temperatures can be estimated as
the difference

(7)

With allowance for (5) and (6), we obtain

(8)

where

(9)

and, as a result, arrive at

(10)

In the limit n2  ∞, formula (10) passes over to (5).
Expression (10) coincides with the relevant expres-

sion that was obtained by Vikhrev and Zabajdullin
[11,13] using the model that they developed and suc-
cessfully tested numerically. Note that, in [11, 13],
expression (10) was derived for the more general case
of media with different conductivities.

2.3. Propagation of a Magnetic Field in a Plasma
with a Finite Current-Aligned Density Gradient

in the EMHD Model

We consider the dynamic problem of a magnetic
field transport by the electric current in a plasma with a
small electron-density gradient of fixed sign along the
magnetic field front, assuming the plasma temperature
to be constant. The results we will obtain from solving
this model problem will allow us to derive a qualitative
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2

Dσ.∼

formula describing the motion of the magnetic field
front in a plasma with a small density gradient of arbi-
trary sign, which is regarded as a small density pertur-
bation.

The evolutionary equation for the magnetic field has
the form

(11)

where the velocities Vx and Vz depend on the plasma
density n(z).

Neglecting diffusion along the magnetic field front,
i.e., imposing the condition

(12)

we reduce the initial equation to

(13)

In the case n = const, equation (13) automatically
goes over to a standard one-dimensional equation for
the magnetic field diffusion (with the boundary condi-
tions presented in Section 2.1). The diffusive penetra-
tion of the field H(0) into a plasma gives rise to a plasma
current with the density

(14)

where the superscript in the velocity refers to the unper-
turbed plasma density. Since, in the case at hand,

∂H/∂x = 0, we have  = 0.

Now, we turn to a plasma in which the density is
nonuniform in the direction of the current (i.e., along
the Z-axis). We seek the electron current velocity in the

form Vx =  + . Assuming that the density per-
turbation affects the field dynamics only slightly, we
arrive at the relationship

(15)

which implies that the perturbed current with the veloc-

ity  is driven exclusively by the plasma density gra-
dient ∂n/∂z ≠ 0. Here, we also assume that the transport
of the magnetic field by the current causes the “tongue”
to extend in the x direction (see Fig. 2) more rapidly
than in the case of ordinary diffusion. Then, equation
(13) splits into the conventional diffusion equation and
equation (15), which describes the magnetic field trans-
port at the electron current velocity. With allowance for

(14), we obtain the estimate for  and, accordingly,
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Fig. 2. A graphical illustration of the mechanism for
enhanced-rate propagation of a magnetic field along the
boundary between two media with different densities of free
electrons (on the left). The shape of the field front profile at
a certain time is displayed on the right. The arrows show the
direction of the electron current.
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for the velocity of the magnetic field front motion
driven by the density gradient ∂n/∂z,

(16)

in which case the field front penetrates the distance

(17)

With allowance for the front motion driven by ordinary
diffusion, we obtain

(18)

The qualitative method used to derive (18) implies that
the numerical coefficient ε is of order unity.

Estimate (16) agrees with the results of analytically
solving the problem of the penetration of a magnetic
field into a plasma whose density increases in the direc-
tion of the electron current [6, 7].

To analyze the case in which the electron current
substantially changes its direction, i.e., the problem of
how the propagation direction of the magnetic field
changes in the presence of a localized electron density
perturbation (this process may be called the “scatter-
ing” of the magnetic field by a localized electron den-
sity perturbation), we can apply estimate (16) to a local
change in the propagation direction of the magnetic
field due to (je , ∂n/∂r) ≠ 0. In this way, it is necessary to
transform formula (16) to the frame of reference in
which the Z-axis is oriented in the local direction of the
vector je , so that the magnetic field is scattered through
a small angle with respect to this vector. The coordi-
nates of the magnetic field front in the new frame and
in the laboratory frame are related by

(19)

where α is the angle between the tangent to the front at

the point at which the new coordinates ( , ) are
introduced and the Z-axis (see Fig. 3). With allowance
for the relationships

(20)

which hold in the new frame, we obtain the following
equation, which describes the motion of the magnetic
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field front x = x(z, t) and is linear in x:

(21)

where the e–i collision frequency τei = τei(z) depends
implicitly on z through the plasma density n(z). Equa-
tion (21) has the solution

(22)

Here, the first term accounts for the contribution of the
nonuniform plasma density; the second terms incorpo-
rates the contribution of the ordinary diffusion; and the
third term describes the transport of the initially per-
turbed magnetic field front, which is specified through

the equation x(z)|t = 0 = f , by an electron

current with the current velocity Vz.

This result generalizes formula (18) (and the corre-
sponding limit of the exact solution obtained by King-
sep et al. [7]) to the case of an alternating-sign density
gradient ∂n/∂z. Formula (22) describes not only the
extension of the tongue in the direction of ordinary dif-
fusion (which results in a faster penetration of the mag-
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Fig. 3. A schematic representation of the transition from the

initial (laboratory) frame to the local frame with the -axis
oriented along the electron current. The arrow indicates the
initial direction of the electron density gradient.
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netic field into a plasma) but also the appearance of a
similar new “tongue,” which is stretched in the opposite
direction and in which the background magnetic field is
reduced (Fig. 3). Formula (22) agrees with the numeri-
cal results obtained by Zabajdullin and Vikhrev [14],
who simulated the propagation of a magnetic field in a
plasma with an alternating-sign density gradient along
the current velocity. Also, formula (22) is in qualitative
agreement with the results obtained by Chukbar and
Yan’kov [8] for the case of a steady-state density profile
varying periodically in the direction of the current
velocity. Chukbar and Yan’kov [8] showed that, in a
steady state, the current flows along snakelike lines, in
which case the plasma electric conductivity is (ωeτei)2

times higher.
The above derivation of the formula describing the

evolution of the magnetic field front in a plasma with a
small density gradient can be generalized to the case in
which the plasma density gradient is arbitrary but the
magnetic field diffusion in the direction perpendicular
to the field front is still incompletely incorporated. If
we take into account the fact that, as the direction of the
velocity vector of the electron current at the magnetic
field front changes, the absolute value of the velocity
vector decreases with time according to the “diffusion”

law ( (t))2 =  + , then the velocity component
orthogonal to the initial magnetic field front can be esti-
mated as

where ϕ is the angle by which the direction of the cur-
rent velocity changes. This velocity component can be
rewritten as

(23)

so that the evolution of the magnetic field front is
described by the equation

(24)

This result agrees qualitatively with the formula

(25)

(where n0 is the unperturbed plasma density), which
was deduced by Zabajdullin [22] from the results of
two-dimensional numerical simulations. The above
formulas reflect the fact that the transition between two
limiting regimes of the enhanced-rate propagation of a
magnetic field in a plasma due to the Hall effect—spe-
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cifically, the regime in which the magnetic field propa-
gates as a wave (see [7]) and the regime of diffusive
penetration (see [9])—can be described qualitatively by
the parameter

 

(26)

 

Although formulas (24) and (25) are insufficiently
accurate for describing the dynamics of the magnetic
field front (see Section 3.2 below), they are simple and
illustrative and provide a better insight into the transi-
tion between different regimes of the enhanced-rate
propagation of a magnetic field in a plasma due to the
Hall effect.

 

2.4 Enhanced-Rate Propagation of a Magnetic Field 
in a Plasma along the Anode Surface with Allowance 

for Finite Ion Inertia: Plasma Displacement 
from the Anode

 

Now, we consider how the enhanced-rate propaga-
tion of a magnetic field affects the dynamics of plasma
ions (this corresponds to the disruption of the ion’s
immobility in the sense that ion inertia is taken into
account). An understanding of this problem requires
solving two-fluid MHD equations (see, e.g., [2, 3, 5, 23,
24]).

For equal constant electron and ion temperatures,
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pressure much higher than the plasma pressure,
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 (the latter condition is valid, in particular, in
the initial stages of high-current gas discharges, such as
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-pinch discharges and PF discharges), the Euler equa-
tion and continuity equation take the familiar form
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the second term on the right-
hand side of the Euler equation vanishes, in which case
we have
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Using the approach proposed by Kukushkin [21],
we can find the scaling describing the plasma displace-
ment from the anode in the above-mentioned initial dis-
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charge stage, in which the plasma compression is insig-
nificant and we can set the plasma density to be con-
stant, 

 

ρ

 

 = 

 

ρ0 = const. Since, near the anode surface, the
magnetic field falls off from H0 to zero along the X-axis
(Fig. 1), we have ∂H/∂x ≈ –H0/∆xeff and, analogously,
∂H/∂z ≈ –H0/∆zdif (see Section 2.1), which yields

We integrate this equation over t to obtain

(28)

(29)

A comparison between (28) and (29) gives

(30)

Consequently, in the initial stage, the velocity uz at
which the plasma is displaced from the anode is ωeτei

times higher than the velocity at which the plasma is
“dragged” along the anode surface. Thus, we can con-
clude that the efficiency with which the plasma is dis-
placed from the anode surface because of the magnetic
field penetration into the anode region is much higher
than the efficiency with which the plasma is dragged by
the field.

The perturbed plasma density near the anode can be
estimated in an analogous manner from the continuity
equation in which the plasma density is sought in the
form ρ(t) ≈ ρ0(1 + δ(t)) with δ(t) ! 1. In the initial stage
of the plasma displacement from the anode surface (t !
1/ωeωiτei), the plasma density evolves according to
the law

(31)

3. GLOBAL PARAMETERS OF THE MAGNETIC 
FIELD PROPAGATION IN A PLASMA

We consider a two-dimensional problem of the
propagation of a magnetic field in an isothermal plasma
in the EMHD model. We assume that at the initial time
t = 0, the magnetic field H = (0, –H0, 0) occupies the
region x < 0 in a plasma with density n = n(z). With
allowance for (2), equation (11), which describes the
magnetic field dynamics, becomes

(32)

When the plasma density gradient along the magnetic
field front in a plasma is small, we can neglect magnetic
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field diffusion in the Z direction, in which case, with

allowance for the inequality  @ , equation

(32) can be simplified to

. (33)

This equation has an exact analytic solution [7] describ-
ing the propagation of the magnetic field in a plasma in
the form of a wave,

, (34)

where the front width is characterized by the parameter

(35)

and the front velocity is

(36)

In a plasma with an arbitrary density gradient, equa-
tion (32) cannot be solved analytically, meaning only
numerical results have been obtained [11, 13, 14, 22].
However, it turns out that such global parameters of the
magnetic field dynamics as the depth of the penetration
of a magnetic field into a plasma and the effective width
of the magnetic field front can be described analy-
tically.

3.1. Velocity of the Enhanced-Rate Penetration 
of a Magnetic Field into a Plasma 

and the Penetration Depth

We start by imposing the conditions (Fig. 4)

(37)

and introducing the effective penetration depth x0,

(38)

where h(x) is a step function of unit height.
As will be shown below, definition (38) correlates

reasonably well with the solutions to equation (33) and
with the results obtained for the case of a steep density
gradient. Definition (38) and conditions (37) will
enable us to derive a closed differential equation for the
penetration depth of the magnetic field into a plasma.
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4πe
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n
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H
H0

e
x ut–

λ
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1+

---------------------=

λ
σH0

2ec
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∂z
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n
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 
1–

=

u
cH0

8πe
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n
--- 

  .–=

H z x t, ,( ) x ∞–→ H0, H z x t, ,( ) x +∞→ 0,= =

∂H
∂x
-------

x +∞→

0=

H x z t, ,( ) H0h x0 x–( )–( )
∞–

+∞

∫ 0,=
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We differentiate (38) with respect to time, take into
account (37), and perform simple manipulations to
obtain

(39)

Equation (39) with the initial condition x(z, t = 0) = 0
has the solution

(40)

Taking the time derivative of (39), we find that the
field front velocity, defined as u ≡ ux = ∂x0/∂t, satisfies
the equation

(41)

Assuming that, at the initial instant, the magnetic field

does not diffuse in the z-direction  @  and

 = , we determine the front velocity at

t = 0:

(42)

∂x0 z t,( )
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----------------------
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8πe
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0

t

∫
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0


u z 0,( )
cH0

8πe
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∂z
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n z( )
---------- 

  .–=

The solution to equation (41) with the initial condition
(42) is

(43)

The same solution can also be derived by differentiat-
ing expression (40) with respect to time.

This solution generalizes the results obtained previ-
ously for the penetration depth of the magnetic field
and the propagation velocity of the magnetic field front
in plasmas with small [7] and infinitely large [9, 11, 13]
density gradients. In fact, in the first case, we have

Changing the variable y = z – ξ and taking into account

the relationship  ≈  – (z – y), which

is valid for a plasma with a small density gradient, we
arrive at expression (36). For a jump in the plasma den-
sity (Fig. 2), we have

which yields

(44)

where erf(x) is the error function. At the point z = 0, we
obtain

(45)

thereby determining the effective diffusion coefficient
for the magnetic field,

(46)

which was evaluated earlier by Vikhrev and Zabajdullin
[11, 13].

If the plasma density increases gradually from n1 to
n2 over a finite distance, then, as t  ∞ (4/Dσt @ ξ2),
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Dσ,=

δx0(t)

H

X

H0 h(x0 – x)

x0(z,t)

Fig. 4. A comparison of the position of the front of the prop-
agating magnetic field (dashed lines) with the instantaneous
magnetic field profile (solid curve). The linear approxima-
tion of the field front profile (dashed-and-dotted line) and
the characteristic front width are shown schematically.
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the front velocity will approach the value

(47)

Numerical integration of expression (40) shows that
the approximate formulas (24) and (25) are insuffi-
ciently accurate, because the magnetic field diffusion in
the direction perpendicular to the instantaneous mag-
netic field front is incompletely incorporated (Fig. 5).

3.2. Front Width

In order to describe the front width δx0, it is expedi-
ent to define it as

(48)

u
cH0

16πe πDσt
-----------------------------

n2 n1–
n2n1

----------------.–=

H0 δx0 z t,( )( )2

=  α x x0–( ) H x z t, ,( ) H0h x0 x–( )–[ ] x.d

∞–

∞

∫

It is convenient to choose the proportionality coeffi-
cient α by replacing the function H(x, z, t) in formula
(48) with its linear approximation (Fig. 4). As a result,
we approximately obtain α = 6.

As an example, we can use definition (48) taken
with the exact field magnitude (34) corresponding to a
small density gradient as an adequate characteristic
front width, in which case we have δx0 = πλ.

To transform (48), we apply the same mathematical
procedure as in the previous section. As a result, we
arrive at the differential equation for the front width,

(49)

1
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Fig. 5. A comparison between the spatial profiles of the magnetic field front at different times t =  × 10–7 s, n = 1, …, 4 . Profiles

(a) and (b) are computed from the approximate formulas (24) and (25), respectively, and profile (c) is calculated from the exact for-
mula (40). The plasma density profile used in simulations is specified as n(z) = n0(1 + 1/2δ(1 – sin(πz/L))) for |z | < L/2 and n = 0 for

|z | ≥ L/2. Here, n0 = 1.0 × 1017 cm–3, L = 0.2 cm, the relative jump in the density is δ = 0.1, the electron temperature is Te = 5 eV,

the initial magnetic field is H0 = 1.0 × 104 G, Dσ = 3.7 × 105 cm2/s, and ωeτei = 33.5.
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with the initial condition

(50)

The derivative ∂x0/∂z can be found from (40).

Approximating the magnetic field profile in the last
term of equation (49) by a linear function, we can
readily see that, under the conditions (L/δx0)ωeτei @ 1
(where L is the spatial scale on which the plasma den-
sity varies) and ωeτei @ 1 (which is characteristic of the
enhanced-rate propagation problem under discussion),

H0 δx0( )
2 α x H x z t 0=, ,( ) H0h x–( )–[ ] x.d

∞–

∞

∫=

this term may be neglected. Interestingly, with the exact
solution (34), the last term in equation (49) exactly
equals zero.

Inserting expression (40) for x0(z, t) into (49) yields
the equation

(51)

With allowance for (50), the solution to this equation
can be written as

(52)

where
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Fig. 6. Time evolution of the front width at the point z = 0 in
the case of a periodically varying density profile n(z) =
n0(1 + 1/2δ(1 – sin(πz/L))). The remaining parameters,
namely, n0, L, δ, Te, and H0, are the same as in Fig. 5, the
initial front width being q = 0. The dashed curve reflects
the  time evolution computed from the approximate for-
mula (54).
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Fig. 7. Time evolution of the effective magnetic field front (40) at the fixed point z = 0 in the case of a plasma with a periodically
varying density (on the left) and spatial profiles of the field front at two different times (on the right) for the same parameters as in
Fig. 6.
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and the quantity q(z) ≡ (δx0(z))2/α|t = 0 accounts for the
contribution of the initial thickness of the magnetic
field front.

If the second derivative ∂2/∂z2[n0/n(z)] varies more

gradually than exp  (at least over the distance

between z –  and z + ), then, in expres-
sions (52) and (53), we can take the density-dependent
functions outside the integrals. For q = const, we obtain
from (52) and (53)

(54)

The condition for the function ∂2/∂z2[n0/n(z)] to
gradually vary yields

(55)

This inequality determines the time interval over which
expression (54) is valid.

Numerical simulations with formula (52) and its
approximate version (54) show that, in the initial stage,
the approximate expression (54) gives quite exact (up
to three significant digits) results (see Fig. 6).

It is of interest to consider the case of a plasma
whose density varies periodically in space. Our simula-
tions carried out with formula (40) show that, in such a
plasma, the shape of the field front profile changes
markedly only over a finite time interval and then
remains essentially unchanged (Fig. 7). Of course, this
does not indicate that the magnetic field stops penetrat-
ing: the field front becomes thicker by an amount δx0,
which is determined from (52), (53), or (54).

4. CONCLUSION

We have developed two qualitatively different
EMHD models of an enhanced-rate (in comparison
with ordinary diffusion) propagation of a magnetic
field in a plasma due to the Hall effect. The first model
is based on a simple hydrodynamic approach, which, in
our opinion, has permitted considerable insights into
the role of the Hall effect in a plasma. In particular, this
model makes it possible to reproduce some familiar
theoretical results and may prove useful for clarifying
the role of the Hall effect without turning to simplified
models, which are inevitably used in rigorous analytic
analyses.

In contrast, the second model endeavors to provide
an exact analytic description of the representative
parameters of the magnetic field propagation. In the
case of an enhanced-rate propagation of the magnetic

z
2

4Dσt
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12Dσt 12Dσt
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2
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n z( )
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field in an isothermal inhomogeneous plasma, these are
the effective velocity of the magnetic field front and the
effective front width. The results obtained with this
model make it possible to check the accuracy of the
simple formulas—in particular, formula (25), derived
by Zabajdullin [22], and formula (24), obtained in Sec-
tion 2—that describe a transition from the regime of
diffusive penetration [9] to the regime in which the
magnetic field propagates as a wave [7].
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